Rotavirus Controls Activation of the 2'-5'-Oligoadenylate Synthetase/RNase L Pathway Using at Least Two Distinct Mechanisms.

نویسندگان

  • Liliana Sánchez-Tacuba
  • Margarito Rojas
  • Carlos F Arias
  • Susana López
چکیده

UNLABELLED The innate immune response is the first line of defense of the host cell against a viral infection. In turn, viruses have evolved a wide variety of strategies to hide from, and to directly antagonize, the host innate immune pathways. One of these pathways is the 2'-5'-oligoadenylate synthetase (OAS)/RNase L pathway. OAS is activated by double-stranded RNA (dsRNA) to produce 2'-5' oligoadenylates, which are the activators of RNase L; this enzyme degrades viral and cellular RNAs, restricting viral infection. It has been recently found that the carboxy-terminal domain (CTD) of rotavirus VP3 has a 2'-5'-phosphodiesterase (PDE) activity that is able to functionally substitute for the PDE activity of the mouse hepatitis virus ns2 protein. This particular phosphodiesterase cleaves the 2'-5'-phosphodiester bond of the oligoadenylates, antagonizing the OAS/RNase L pathway. However, whether this activity of VP3 is relevant during the replication cycle of rotavirus is not known. Here, we demonstrate that after rotavirus infection the OAS/RNase L complex becomes activated; however, the virus is able to control its activity using at least two distinct mechanisms. A virus-cell interaction that occurs during or before rotavirus endocytosis triggers a signal that prevents the early activation of RNase L, while later on the control is taken by the newly synthesized VP3. Cosilencing the expression of VP3 and RNase L in infected cells yields viral infectious particles at levels similar to those obtained in control infected cells, where no genes were silenced, suggesting that the capping activity of VP3 is not essential for the formation of infectious viral particles. IMPORTANCE Rotaviruses represent an important cause of severe gastroenteritis in the young of many animal species, including humans. In this work, we have found that the OAS/RNase L pathway is activated during rotavirus infection, but the virus uses two different strategies to prevent the deleterious effects of this innate immune response of the cell. Early during virus entry, the initial interactions of the viral particle with the cell result in the inhibition of RNase L activity during the first hours of the infection. Later on, once viral proteins are synthesized, the phosphodiesterase activity of VP3 degrades the cellular 2'-5'-oligoadenylates, which are potent activators of RNase L, preventing its activation. This work demonstrates that the OAS/RNase L pathway plays an important role during infection and that the phosphodiesterase activity of VP3 is relevant during the replication cycle of the virus.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impairments of the 2-5A synthetase/RNase L pathway in chronic fatigue syndrome.

This paper provides an overview of the evidence addressing the impairments of the 2'-5' oligoadenylate (2-5 A) synthetase/RNase L pathway in Chronic Fatigue Syndrome (CFS) patients. The 2-5A synthetase/RNase L pathway in CFS patients appears to be both up-regulated (i.e. increased levels of bioactive 2-5A synthetase and increased activity of the RNase L enzyme) and deregulated (elastase and cal...

متن کامل

Quelling an innate response to dsRNA

The interferon inducible oligoadenylate synthetase (OAS)/RNase L pathway is an innate defense against invading viral pathogens that is linked to cell survival [reviewed in 1]. OAS family proteins are pattern recognition receptors that recognize double-stranded RNA (dsRNA), a pathogen-associated molecular pattern. In the presence of dsRNA, which is produced during the replication cycle of a broa...

متن کامل

Distinct antiviral roles for human 2',5'-oligoadenylate synthetase family members against dengue virus infection.

The 2',5'-oligoadenylate synthetase (OAS) and its downstream effector RNase L play important roles in host defense against virus infection. Oas1b, one of the eight Oas1 genes in the mouse genome, has been identified as a murine flavivirus-resistance gene. Four genes, OAS1, OAS2, OAS3, and OAS-like (OASL), have been identified in the human OAS gene family, and 10 isoforms, including OAS1 (p42, p...

متن کامل

Nucleoside modifications in RNA limit activation of 2′-5′-oligoadenylate synthetase and increase resistance to cleavage by RNase L

The interferon-induced enzymes 2'-5'-oligoadenylate synthetase (OAS) and RNase L are key components of innate immunity involved in sensory and effector functions following viral infections. Upon binding target RNA, OAS is activated to produce 2'-5'-linked oligoadenylates (2-5A) that activate RNase L, which then cleaves single-stranded self and non-self RNA. Modified nucleosides that are present...

متن کامل

Structural basis for 2'-5'-oligoadenylate binding and enzyme activity of a viral RNase L antagonist.

UNLABELLED Synthesis of 2'-5'-oligoadenylates (2-5A) by oligoadenylate synthetase (OAS) is an important innate cellular response that limits viral replication by activating the latent cellular RNase, RNase L, to degrade single-stranded RNA. Some rotaviruses and coronaviruses antagonize the OAS/RNase L pathway through the activity of an encoded 2H phosphoesterase domain that cleaves 2-5A. These ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of virology

دوره 89 23  شماره 

صفحات  -

تاریخ انتشار 2015